Excitation-contraction coupling in myocardium of nonhibernating and hibernating chipmunks: effects of isoprenaline, a high calcium medium, and ryanodine.

نویسنده

  • N Kondo
چکیده

The electromechanical responses to isoprenaline and a high calcium medium on cardiac muscles from nonhibernating and hibernating chipmunks were studied in the presence and the absence of ryanodine. In nonhibernating animal preparations, isoprenaline (5 X 10(-8) M) caused a marked positive inotropic effect with an increase in the amplitude of the action potential plateau and augmented the slow action potential in muscle depolarized with 26 mM K+. In hibernating animal preparations, isoprenaline failed to cause a positive inotropic effect in spite of an increase in the amplitude of action potential plateau and slow action potentials. Similar inotropic effects were caused in the two preparations when extracellular calcium was raised to 6 mM, but action potential plateau and slow action potentials of the two preparations were less affected by this procedure; only in nonhibernating animal preparations was the amplitude of the slow action potential slightly increased. Ryanodine (2 X 10(-6) M) partially inhibited the contraction but augmented the action potential plateau and slow action potentials in nonhibernating animal preparations, while in hibernating animal preparations, it eliminated the contraction and severely inhibited the action potential plateau and slow action potentials. The electrical effects of isoprenaline on the two preparations and of a high calcium medium on nonhibernating animal preparations were more pronounced in the presence of ryanodine than in the absence of it. However, the electrical activity on hibernating animal preparations was unaffected by a high calcium medium in either the presence or absence of ryanodine.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HNF-4 participates in the hibernation-associated transcriptional regulation of the chipmunk hibernation-related protein gene

The chipmunk hibernation-related protein 25 (HP-25) is involved in the circannual control of hibernation in the brain. The liver-specific expression of the HP-25 gene is repressed in hibernating chipmunks under the control of endogenous circannual rhythms. However, the molecular mechanisms that differentially regulate the HP-25 gene during the nonhibernation and hibernation seasons are unknown....

متن کامل

Local Control Models of Cardiac Excitation–Contraction Coupling

In cardiac muscle, release of activator calcium from the sarcoplasmic reticulum occurs by calcium- induced calcium release through ryanodine receptors (RyRs), which are clustered in a dense, regular, two-dimensional lattice array at the diad junction. We simulated numerically the stochastic dynamics of RyRs and L-type sarcolemmal calcium channels interacting via calcium nano-domains in the junc...

متن کامل

Excitation-contraction coupling from the 1950s into the new millennium.

1. Excitation-contraction coupling is broadly defined as the process linking the action potential to contraction in striated muscle or, more narrowly, as the process coupling surface membrane depolarization to Ca(2+) release from the sarcoplasmic reticulum. 2. We now know that excitation-contraction coupling depends on a macromolecular protein complex or 'calcium release unit'. The complex exte...

متن کامل

Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling.

Two types of calcium channels signal excitation-contraction (E-C) coupling in striated muscle: dihydropyridine receptors (DHPRs, voltage-gated L-type calcium channels on the transverse tubule) and ryanodine receptors (RyRs, calcium release channels on the sarcoplasmic reticulum). Sarcolemmal depolarization activates the DHPR; subsequently, the RyR is activated and releases calcium that activate...

متن کامل

The functions of two species of calcium channel in cardiac muscle excitation-contraction coupling.

The contractile state of cardiac muscle cell is determined by the level of calcium in the cytosol. Each action potential produces a transient elevation of cytosolic calcium. The interaction of calcium ions with the contractile elements of the cell initiates a series of events which culminate in cell shortening. The process by which cell excitation is coupled to contraction involves the function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 59 2  شماره 

صفحات  -

تاریخ انتشار 1986